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Abstract—Use of IP-layer anycast has increased in the last few
years beyond the DNS realm. Existing measurement techniques
to identify and enumerate anycast replicas exploit specifics of the
DNS protocol, which limits their applicability to this particular
service. In this paper, we propose and thoroughly validate a
protocol-agnostic technique for anycast replicas discovery and
geolocation, further we also provide the community with open
source software and datasets allowing others to replicate our
experimental results, potentially facilitating the development of
new techniques such as ours.

In particular, our proposed method achieves thorough enumer-
ation and city-level geolocalization of anycast instances from a
set of known vantage points. The algorithm features an iterative
workflow, pipelining enumeration (an optimization problem using
latency as input) and geolocalization (a classification problem
using side channel information such as city population) of
anycast replicas. Results of a thorough validation campaign show
our algorithm to be robust to measurement noise, and very
lightweight as it requires only a handful of latency measurements.

Index Terms—IP; Anycast; Latency-Based Geolocation;

I. INTRODUCTION

IP-layer anycast [1] allows a group of replicas to offer the
same service using a shared IP address from geographically
distinct locations around the globe. Inter-domain routing di-
rects the traffic destined to an anycast address to the topolog-
ically closest replica (in BGP terms). Anycast is an appealing
solution as it is very simple to deploy (i.e., avoiding the
need to manage some custom and complex application-layer
solution), provides users with enhanced quality of experience
(e.g., for services where we want to cache content close to
the user), while also providing several advantages for the
service provider (i.e., load balancing among replicas, robust
to DDoS attacks in reason of geographic traffic confinement,
etc.). Therefore, many important Internet services [2] use
anycast nowadays, to reduce response times and mitigate the
effects of server failure and denial of service attacks. While
historically IP anycast has been mostly relegated to DNS,
we observe an increasing tendency of anycast CDN services:
e.g., EdgeCast [3] and CloudFlare [4], that advertise to serve
respectively 1.5 billion objects per hour representing the 4%
of the whole Internet traffic1 and over 2 million Web sites2,
are good examples well testifying this trend.

With this rise of anycast usage, there is a concomitant
need to understand anycast services [5]–[20]. ISP providers

1http://www.edgecast.com/company/news/edgecast-continued-growth
2https://www.cloudflare.com/features-cdn

have a large commercial stake in handling traffic, and for
efficient operation they need to where these flows are directed
to – which is more ambiguous in the case of anycast than
with unicast. Businesses that rely upon services that are
delivered via anycast need adequate troubleshooting tools. The
locations from which services are provided are of interest to
scientists in a broad span of fields. Unfortunately, the publicly
information available regarding anycast replicas placement
is often outdated [6], if available at all [5], which raises
the need for tools capable of automatic, service-independent,
lightweight detection, enumeration and geolocation of anycast
replicas placement. Yet the current state of the art consists
of techniques that are either limited to detection [5] or
enumeration [6], but are not capable of replicas geolocation.
Additionally, most of the work on anycast [6]–[11], including
enumeration techniques such as [6], leverage DNS protocol
information for the enumeration, so that they fail with any
other popular anycast services such as, e.g., CDN.

We recently proposed iGreedy [21], a service-independent
techniques able to detect, enumerate and geolocate anycast
replicas based on a handful of latency measurement from
distributed vantage points. This work extends [21] in several
ways, not only by a thorough validation of the technique itself,
but also providing the community with open source software
and datasets to replicate our experimental results, as well as
facilitating the development and validation of new techniques.
Especially, at [22] we provide the community with:

• the iGreedy technique for lightweight service-agnostic
anycast discovery, capable of accurately enumerate
(>75% recall) and geolocate (>75% true positive geolo-
cation) replicas with a handful of latency measurements;

• its thorough validation, using multiple targets pertaining
to different services (DNS and CDN) from two measure-
ment infrastructures (RIPE Atlas and PlanetLab);

• an open-source implementation of the technique, able to
operate on offline datasets, as well as to generate new
datasets (from RIPE Atlas);

• a simple environment to visualize on a map the results of
detection and classification algorithms, including but not
limited to our, and compare them against ground truth;

• ground truth that we have assembled regarding DNS (via
standard CHAOS queries) and CDN (via inspections of
HTTP headers, a novel contribution on its own);

• a dataset comprising exhaustive latency measurements
from two measurement infrastructures (RIPE Atlas, Plan-
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etLab) towards anycast addresses in our ground truth.
With this “test suite”3, practitioners are equipped with a

tool to unveil and troubleshoot anycast replicas they possibly
encounter in their daily operations. Similarly, researchers
can develop other anycast identification algorithms, testing
whether they are better than iGreedy at, with low overhead,
determining whether an IP address is anycast, how many
replicas stand behind the address, where they are located, etc.

The remainder of this paper is organized as follows. We
first overview the current state of the art in Sec. II and
specify our objectives in Sec. III. We next describe our dataset,
including the ground-truth in Sec. IV. Our own solution of the
anycast geolocation problem, namely iGreedy, is described in
Sec. V. Results based on the dataset and software that we
release at [22] are shown a glance in Sec. VI and completed
by a thorough sensitivity analysis in Sec. VII. Examples of
applications of our technique, each having a high practical
interest, are given in Sec. VIII, after which conclusive remarks
are gathered in Sec. IX.

II. STATE OF THE ART

Anycast server enumeration and geolocalization is part of
a broader effort from the research community to geographi-
cally map the Internet infrastructure and identify the various
components of the physical Internet [24]. While latency-based
unicast geolocation [25], [26] is well studied, the same does
not hold for anycast, where triangulation technique locating
unicast instances at the intersection of several measurement
do not apply. Additionally techniques such database techniques
are not only unreliable with unicast [27], but also with anycast,
since they advertise a single geolocation per IP. Finally,
infrastructure mapping techniques, the last in line being [18],
[28] leverage EDNS-client-subnet (ECS) extension that is not
widespread yet, and fails with does not apply to anycast either.

Research on anycast has so far prevalently focused either
on architectural modifications [10], [14], [29], [30] or on
the characterization of existing anycast deployments, which
is close to our work and that we compactly summarize in

3It is worth to point out that code and datasets are available in the same
tarball at this direct link [23]

Table I. Overall, a large fraction of these studies quantify the
performance of anycast in current IP anycast deployments in
terms of metrics such as proximity [?], [8], [10]–[12], affinity
[7], [8], [10]–[13], [31], availability [8], [9], [11], [13], and
load-balancing [11]. Interestingly, while the body of historical
work targets DNS, more recent work [13], [14] has tackled
investigation of anycast CDN performance (e.g., client-server
affinity and anycast prefix availability for the CacheFly CDN).

Fewer techniques instead exist that allow to detect, enu-
merate or geolocate anycast replicas, and that are thus closest
to this work. In terms of methodologies, as reported summa-
rized in Table I, anycast infrastructure mapping has so far
employed the following measurement techniques: (i) issuing
DNS queries of special class (CHAOS), type (TXT), and name
(host-name.bind or id.server [32]), (ii) BGP feeds, and finally
active (iii) traceroute or (iv) ICMP latency measurement.
Specifically, [6] employs (i) and (iii), while [5] leverages (ii)
and (iii) and our proposal [21] uses exclusively (iv).

In particular, detection of anycast prefixes is tackled in [5]
by leveraging latency measurement (from distributed tracer-
oute agents) and BGP routing information (from looking glass
and public routers). BGP information is helpful since when
the transit tree of an IP prefix has multiple domestic ISPs
that are located in disjoint geographic locations, this IP prefix
is likely anycasted. Latency measurement complement this
information inferring if an IP prefix is anycast by detecting
speed-of-light violations, as in this work. Techniques used in
[5] have the merit of being protocol-independent, yet they do
not to enumerate (let alone to geolocate) replicas as we do in
this work. Protocol specific information is instead leveraged
in [6] to enumerate DNS anycast replicas. As pointed out
in [6], unfortunately not even all anycasted DNS servers
reply with their identifier to CHAOS-class queries, and in
case they do, the replies do not always follow a common
naming standard. Additionally, [6] show that in-path proxies
may modify such replies and therefore propose two new
techniques to distinguish among servers within an anycast
group. These techniques consist in either augmenting DNS
CHAOS TXT queries with traceroute or modifying existing
anycast servers to reply to special DNS IN TXT queries.
Despite being a valuable tool for the domain name system,



the main drawback of DNS-based technique is their narrow
field of applicability with respect to [5], [21]. Finally, with
the exception of our iGreedy proposal [21] that this work
further enhances, no other technique exists that is capable of
lightweight and protocol-independent anycast replicas geolo-
cation. The technique is lightweight as it relies on a handful
of latency measurement, and is reliable and robust in spite of
noisy measurement: indeed, latency measurement are used for
detection and enumeration purposes, whereas geolocalization
depends on reliable side-channel information (e.g., such as city
population).

III. PROBLEM DEFINITION

Our open source test suite allows anyone not only to (i)
perform anycast measurement with the iGreedy technique, that
represents the current state of the art, but also to (ii) try out
his or her anycast identification algorithm on ground truth data
that we have established, and compare the performance of their
algorithm against iGreedy. This section frames the problem
at a high level, overviewing at the input available to these
algorithms, and presenting useful design guidelines to advance
the state of the art. We defer details about the dataset (Sec. IV),
our proposed algorithm (Sec. V), its performance (Sec. VI) and
sensitivity (Sec. VII) to later sections.

The algorithms that can be evaluated in our framework
suite are ones that solve the problem using latency-based
measurements. As depicted in Fig. 1(a), for any applica-
tion of the algorithm there will be some number M of
measurement agents launching latency measurement towards
each of the target addresses (e.g., with ICMP ping or other
protocols). Details about the measurement infrastructure and
campaigns are reported in Sec. IV-A and Sec. IV-B respec-
tively, while their impact of iGreedy performance is the object
of Sec. VII-C. Measurement agents are located at different
vantage points throughout the globe, at known (and reliable)
positions expressed as latitude and longitude (lat, lon). As
early introduced, the anycast identification problem consists
of three subproblems: (i) given a target IP address, t, detect
if it is anycasted, (ii) enumerate the replicas that are offering
the anycasted service, and (iii) geolocalize those replicas. We
now separately consider each subproblem.

The anycast detection subproblem. We assume that any
latency-based detection algorithm will generate a number
2 6 N 6 M of disks for a given target IP address t.
Each disk is a circle that is centered on a vantage point in
which, according to speed of light calculations, t must lie. If
there is any pair of disks that do not overlap, this is proof
that t is an anycast address, as illustrated in Fig. 1(b) and
introduced more formally in Sec. V-A. On the other hand, if
there is a unique area in the world on which all of the disks
overlap then, while t might be anycast, we cannot prove this
with the evidence at hand and so we assume t to be unicast.
For a given address that truly is anycast, loosely speaking
the more disks that are generated, the more chances there
are to correctly determine this fact. The choice of vantage
points (their locations and the spacing between them) will also

matter. It might be that for a given set of vantage points, even
conducting measurements from all of the vantage points will
not be sufficient to determine that some anycast addresses are
such (e.g., when vantage points are few and close, or when
the latency noise is large so that all disks overlap). But if
there are non-overlapping disks, it suffices to correctly choose
two vantage points in order to make the detection. A similar
technique is employed by [5] to detect anycast replicas.

The anycast replica enumeration subproblem. Intuitively, if
the observation of a pair of non-overlapping disks allows to
detect an address as anycast, the observation of several disks
that do not overlap among them allows to further enumerate
distinct replicas. Given N disks, there are multiple ways to
choose a set of K 6 N non-overlapping disks such that
the addition of any of the disks outside of this set would
result in an overlap. Our enumeration technique is discussed
in Sec. V-B Ultimately, the enumeration problem is better
framed in terms of an optimization problem, in which an
optimal solution consists in identifying the largest number (all
if possible) of replicas. The enumeration subproblem may use
the same disks as used for the detection problem (where only a
pair suffices to trigger detection), or additional disks (aiming
for a full enumeration). At a minimum, a number of disks
equal to the number of anycast replicas is required in order to
enumerate all of them. In practice, it might not be possible to
enumerate all replicas depending on the set of vantage points
available in the measurement infrastructure. Sensitivity to the
measurement infrastructure is assessed in Sec. VII-C.

The anycast replica geolocalization subproblem. For each of
the K non-overlapping disks generated in the previous step, a
replica must lie somewhere within that disk. The geolocaliza-
tion problem can thus be thought as a classification problem,
in which we select, from a set of discrete locations within
each disk, the most likely position of the anycast replica in that
disk. Of course, in this stage not only latency measurement, but
also any pertinent information can be leveraged by algorithms,
such as, for instance, known landmass areas (replicas are
unlikely to be out at sea) and locations of major metropolitan
areas (replicas might be situated close to these, in order to
promote low latencies to large numbers of users). In Fig. 1(b)
such discrete locations are indicated with crosses within the
disk: we discuss how we build a reliable ground truth for
the position of such crosses in Sec. IV-E. Our geolocation
technique is described in Sec. V-C and a sensitivity of its
performance is presented in Sec. VII-A.

Beyond the state of the art. Desirable properties of algorithms
outlined above can be summarized as (i) reliable detection, (ii)
complete enumeration, (iii) accurate geolocation, (iv) protocol
independence and (v) low-overhead. Properties (i)-(iii) are
specific to each algorithm, and this paper illustrates especially
iGreedy enumeration and geolocation performance. The re-
maining properties are intrinsic to our problem formulation,
since algorithms are given just (iv) RTT latency measurement
(v) in the order of 100-1000 vantage points. Notice specifically
that the (iv) protocol independence requirement suggests the



(a) (b)

Fig. 1. Synoptic of (a) anycast measurement scenario and (b) anycast instance detection via latency measurements

use of ICMP to obtain latency samples. Indeed, given that no
a priori information on the service running on an anycast host
can be assumed, soliciting response on specific transport layer
ports (e.g., UDP 53 for DNS or TCP 80 for CDN) would likely
only obtain service-specific response (i.e., conditioned to the
availability of that anycast service on the target under test).
Conversely, ICMP based latency measurement are not affected
by this per-service bias. We further discuss quality of latency
samples in Sec. IV-B and the impact that latency noise has on
iGreedy in Sec. VII-C. Finally, in terms of (v) overhead, we
remark that the amount of probe traffic in our datasets is much
lower to what considered in recent studies employing from 20k
vantage points [11], to soliciting responses from about to 300k
recursive DNS resolvers plus 60k Netalyzr datapoints [6]. In
our framework, algorithms employs as few as 1/100 of the
Netalyzr (or 1/1000 of the recursive DNS) data points: while
challenging, our results show that fairly complete enumeration
and correct geolocation are achievable even with few latency
samples.

IV. DATASETS

As summarized in Fig.1(a), we run a number of mea-
surement campaigns (MC) to provide latency measurement
from a relatively low number (hundreds to thousands) of
agents situated at different vantage points around the world.
Location and number of agents depend on the measurement
infrastructure (MI) used in the campaign. Since our MCs
target known DNS and CDN anycast services, we can build
reliable ground truth (GT) using protocol-specific information.
In particular, building a ground truth for the anycast CDN
service is, to the best of our knowledge, a novel contribution
on its own – especially, since GT is highly more valuable with
respect to publicly available information (PAI). This section
discusses the MI, MC, PAI and GT datasets that we provide
in our test suite, and that we used to obtain iGreedy results
discussed in the reminder of the paper.

A. Measurement infrastructures (MI)

A fairly large number of measurement infrastructures (MIs)
exist in the current Internet. In this work, we use RIPE
Atlas [33] and PlanetLab [34] which are interesting due to
their complementarity aspects. On the one hand, RIPE Atlas

has a better coverage (over 6k VPs in 2k from 150 countries,
and growing) than PlanetLab (about 350 active VPs in 180
AS from 30 countries), from which we expect RIPE Atlas to
provide a more exhaustive coverage. On the other hand, RIPE
Atlas is more constrained than PlanetLab in the type and rate
of measurement that can be performed: for instance, no HTTP
measurement are allowed from RIPE Atlas, limiting the space
of actions in the CDN case (see later Sec. IV-E). Given our
aim, we are specially interested in the geolocation accuracy of
individual vantage points (VPs), which is typically reported
by the person who hosts the measurement agent, and verified
through unicast geolocalization services, to check for initial
accuracy and to catch cases when an agent is moved to another
location. For instance, PlanetLab Europe uses Spotter [35],
while RIPE Atlas uses MaxMind [36], and additionally report
meta-information about the accuracy of geolocalization for (a
growing number of) VPs. In few cases we spotted inconsistent
location of VPs, that we validate via manual inspection4. The
impact of MI on iGreedy is assessed in Sec. VII-C.

B. Measurement campaigns (MC)
As illustrated in Fig. 1(a) from the RIPE Atlas and Planet-

Lab MIs, we perform several measurement campaigns (MCs)
destined to multiple target IP addresses, representative of
different services. Specifically we target DNS root servers F,
I, K and L and additionally two representative addresses of
the EdgeCast and CloudFlare CDN. For each vantage point
p and target t, what can be easily measured is the round trip
time delay RTT i(p, t) that the i-th packet sample took to
travel from p to the closest instance of t and back to p. As
algorithms require the one-way propagation delay, we estimate
it as δi(p, t) = RTTi(p, t)/2: halving the round trip time, we
make the worst case assumption of maximal distance from
the vantage point (since forward and backward paths are not
necessarily symmetric).

It is also well known that measured latency samples can
vary from packet to packet, due to different paths [37],
queuing delay [38], protocols [39] or even flow-id for the
same protocol [39]. To partly compensate for these po-
tential sources of bias we (i) use a minimum operation

4As a side effect of this work, we contributed to correct the geolocalization
of some of them contacting the infrastructure maintainers. Annotations about
inconsistent vantage points locations are available at [22]



δ(p, t) = miniRTTi(p, t)/2 over multiple P samples to re-
moving noise due to variable RTT components (e.g., queuing
delay) and (ii) use RTT samples gathered from different proto-
cols (e.g., ICMP, DNS/UDP and HTTP/TCP). Concerning the
latter point, we leverage different campaigns over different
application layer protocols, such as DNS and HTTP, which
are anyway needed to build the ground truth described in
Sec. IV-E. In the case of DNS, RTTi(p, t) samples include the
response time of DNS servers (yet another small but variable
component that the minimum operation attempts at filtering).
In the case of HTTP, RTTi(p, t) represent the TCP three-way
handshake time. We shall see in Sec. VII-C that the number of
P measurement, or the protocol they are gathered with have
no noticeable impact on the performance of the algorithm we
propose. To understand why this happens, it is worth recalling
that (i) at the speed-of-light, packets travel about 100 km in
1ms and that (ii) recent measurement work [38] has shown that
access links can queue several seconds worth of delay, well
in excess of the Earth to Moon distance [40]. It follows that
geolocation algorithms must cope with noise (due to protocol
bias or individual samples variability) as otherwise even slight
inaccuracies of the latency estimation can translate into fairly
large errors for the geolocation problem. iGreedy thus prefer
to leverage side-channel information (such as city population)
to factor out latency measurement noise.

C. Publicly available information (PAI)

Publicly available information (PAI) about our target IP
addresses is generally available through some Website. While
PAI is of course valuable, it however adds additional chal-
lenges and ambiguities. In some cases, PAI comprises a larger
set of replicas with respect to those actually visible from the
VPs, which happens for instance in countries with low MI
vantage point densities (e.g., China and African continent). In
this case, discrepancies between an algorithm results and the
PAI are tied to the measurement infrastructure, as opposite
to the algorithm. Considering the PAI as reliable would in
this case mistakingly increase the amount of False Negative
classifications for the algorithm. In other cases, the opposite
is true: i.e., PAI comprises a smaller set with respect to the
set of replicas actually seen from the VP, which happens
whenever the Webpage content is outdated. One example is
worth making to anecdotally assess the amount of discrepancy
between PAI and measurement in the case of DNS root
servers. DNS operators maintain an official website [41] with
maps annotated with the number and geographic distribution
of deployed sites around the world. According to [6], in
2013 PAI of root server E was advertising a single (unicast)
location, despite their DNS state of the art method was able
to enumerate 9 distinct locations. In 2014, at the time of
our [21] experiments 12 anycast locations were advertised,
but our PlanetLab and RIPE measurements were able to
collectively discover over 40 replicas. Considering the PAI
as reliable would in this case mistakingly increase the amount
of False Positive classifications for the algorithm. A telling
example of the manual validation concerns root server L,
advertising a replica at SGW, which corresponds to an airport

in Canada. However, this (spurious) instance was incoherent
with the measurement from over 100 vantage points, that
were (correctly) locating the vantage point in Singapore. PAI
information do not report any airport in Canada but does in
Singapore, confirming the hypothesis that protocol specific
information is configured by humans and still possibly subject
to errors, despite their rarity. These conflicting situations
cannot of course be determined by solely relying on PAI and
rather call for more accurate alternative methods.

D. Ground truth (GT)

For each target IP address in our dataset, we provide
geolocation ground truth (GT), which is non ambiguous and
solves the aforementioned issues with PAI. GT is assembled
by (i) performing additional experiments that exploit protocol
specific information and (ii) manually validating this new
information against PAI and latency measurement. In the case
of IP addresses of root DNS servers, we use DNS CHAOS
requests as in [6], whereas we use HTTP requests in case of
CDN IP addresses to reliably extract geolocation information
as described in the following.

CDN Ground truth. To collect CDN ground truth, we issue
HTTP HEAD requests towards CloudFlare and EdgeCast to
solicit a reply from the destination servers from PlanetLab.
Unfortunately, it is not possible to issue HTTP HEAD requests
from RIPE since the RIPE API does not provide HTTP support
due to legal reasons (e.g., RIPE Atlas could be otherwise
used as a proxy for accessing content restricted in some
countries). It follows that from RIPE we are only able to issue
ICMP measurements, whereas from PlanetLab we perform
both ICMP and HTTP queries. After manual inspection of the
HTTP headers, we find that the HTTP reply headers contains
meta-information about the servers location. Specifically, we
observe that CloudFlare uses a custom CF-RAY header that
uniquely identifies the server answering the HTTP request,
whereas EdgeCast encodes such information in the standard
Server header. Pairing such measurement data with PAI
allows to reliably determine GT information. CloudFlare en-
codes the server name directly as IATA airport codes, whose
status is published at [42]. At the time we run our measurement
campaign, EdgeCast used instead a mix of IATA codes and
pseudorandom string for server names, publishing the servers
list along with their geographical locations and the strings
used to identify them at [43]. Currently, the page URL [44] as
well as the information format has changed: while this is not
surprising, it also testify that the collection effort of GT (and
PAI) synchronously with MCs is far from being a trivial tasks.
This further stresses the values of dataset sharing, which let
the community capitalize on the effort of individual groups.

DNS Ground truth. To build a reliable DNS ground truth, we
issue distributed IPv4 DNS queries of class CHAOS, type
TXT, and name hostname.bind [32] to DNS root servers F,
I, K, and L that are operated by ISC, Netnod, RIPE NCC,
and ICANN respectively. We use both RIPE and PlanetLab to
collect DNS replies to our queries: in the case of PlanetLab,
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Fig. 2. Dataset statistics: Per-target and Per-infrastructure of (a) Cumulative distribution function (CDF) of minimum latency over all protocols and (b)
Complementary CDF (CCDF) of the number of IATA airports in each disk

we issue new ICMP and DNS measurements, whereas we
rely in the case of RIPE of DNS measurements performed
by the full set of vantage points that are already published
by RIPE. As in the previous case, pairing protocol-specific
replies with PAI allows to reliably determine GT information
in the DNS case. Indeed, despite CHAOS replies do not follow
a standard format, GT is relatively easy to manually validate
since some operators name servers in their infrastructure after
IATA airport codes (e.g., AMS, PRG in root severs F and
L respectively) or IXPs short names (e.g., AMS-IX, BIX,
MIX in root server K). In other few cases (e.g., root server
I), operators use arbitrary codes, but make publicly available
a list that maps site codes to locations. In sporadic cases,
multiple CHAOS names are located in the same city: as we
are interested in locating geographically distinct replicas, as
opposite to enumerating the number of physical or virtual
servers operating on a site, we coalesce all replicas located
in the same site.

E. Dataset at a glance

We depict some relevant properties of our dataset in Fig.2,
more details are available in [45]. Notably, we report the
Cumulative Distribution Function (CDF) of the latency sam-
ples coalescing ICMP, DNS and HTTP protocols altogether
(left) for different targets (top) and measurement infrastructure
(bottom). Since each latency sample translate into a disk
in the Earth surface, we report the disk radius in the top-
x axis for reference: it can be seen that the large majority
of latency samples, being larger than 10 ms, map to disks
that are big enough to cover a whole country. As we have
seen in the previous section, ground truth for both DNS and
CDN is expressed by the very same DNS and CDN operators
in terms of IATA airport codes. We report the CDF of the
number of IATA airports per disk in the right plot of Fig.2.
Intuitively, the number of airports inside such disks can give a
rough estimation of the difficulty of finding the correct replica
location. for reference, top x-axis reports the probability of a
random guess, which is inversely proportional to the number
of airports in the disk. From the CDF in the bottom plot

of Fig.2(b), one can notice that only about 10% of all disks
contain less than 100 airports, or otherwise stated naı̈ve guess
has lower than 1/100 chances of success in roughly 90% of the
cases: it follows that anycast geolocation algorithms should
thus be designed to be inherently robust to noise in latency
measurement.

V. IGREEDY ALGORITHM AND IMPLEMENTATION

Our test suite also comprises an open source implementation
of the iGreedy technique we originally proposed in [21],
of which we illustrate the inner working with the help of
Fig. 3. The implementation can operate on historical data (i.e.,
the dataset early described, corredated with ground truth) or
issue new measurement from RIPE Atlas (in which case the
provided GT is no longer up-to-date). In a nutshell, (a) we
first perform latency measurement to a given IP and map
them to disks centered around the VP, that by design contains
at least one anycast instance; (b) if two such disks do not
intersect, we can infer that VPs are contacting two different
replicas, as is the case for the green disks in Fig. 3(b); (c)
we provide a conservative estimate of the minimum number
of anycast replicas by solving a Maximum Independent Set
(MIS) problem, using a greedy 5-approximation algorithm that
operates on disks of increasing radius size as in Fig. 3(c); (d)
in each disk, we geolocate the replica at city-level granularity
with a maximum likelihood estimator biased toward city pop-
ulation; and finally, (e) we coalesce the disks to the classified
cities, which reduces disk overlap and allows iteration of the
algorithm until convergence, thus increasing the recall (i.e.,
number of replicas discovered) along each iteration. We now
describe the steps in more details.

A. Detection

At a logical level, prior to enumerating anycast instances,
we must detect whether there are indeed anycast replicas
behind a given unicast IP address. This can be done so by
detecting speed-of-light violations in our dataset by comparing
latency measurements δ to the expected propagation time due



(a) Measurement: Map
RTT samples to disks
centered around VPs

(b) Detection: Non-
overlapping disks imply
speed-of-light violation

(c) Enumeration: Solving a Maximum In-
dependent Set (MIS) problem yields non-
overlapping disk, each containing a different
replica (two steps shown)

(d) Geolocalization:
Maximum likelihood
classification problem
(city-level)

(e) Iteration: Collapse
disks around geolocal-
ized replicas until con-
vergence

Fig. 3. Synoptic (bottom) and illustration (top) of the iGreedy anycast detection, enumeration and geolocalization algorithm

to speed-of-light considerations as in [5]. As early illustrated
in Fig. 1(b), we consider pairs of latency measurements δ(p, t)
and δ(q, t) for the same target. We map measurements to
disks Dp whose radius equals d+(p, t) = δ(p, t)/3, where the
constant 3 lumps altogether several factors (such as the speed-
of-light in a fiber medium, the fact that fiber deployment is
subject to physical constraints, etc.), of which a good overview
is given in [46].

Specifically, given two vantage points p, q we compute their
geodesic distance dg(p, q) according to Vincenty’s formulæ.
As packets cannot travel faster than light, if

dg(p, q) > d+(p, t) + d+(q, t) ≥ d(p, t) + d(q, t) (1)

then disks Dp and Dq do not overlap, indicating that p
and q are in contact with two separate anycast replicas.
Some remarks are in order. First, (1) compares distances with
homogeneous dimensions, that are however gathered with dif-
ferent techniques. Note that considering the geodesic distance
dg(p, q) between vantage points yields a conservative lower
bound to the expected propagation time between p and q, as
a packet will not travel along a geodesic path but will follow
a path shaped by physical and economic constraints (i.e.,
the geography of fiber deployment, optoelectronic conversion,
BGP routing, etc.). Instead, since latency is not only due
to propagation delay, d+(p, t) conversely aggressively upper
bounds the distance that a packet may have traveled during
δ(p, t). As the the inequality is violated only when the conser-
vative lower bound exceeds the upper bound, it follows that (1)
is conservative in detecting anycast instances and, assuming
correct geolocation of VPs, by definition avoids raising false
positive anycast instances (i.e., flagging as anycast a truly
unicast target). Notice that in the iGreedy implementation,
the detection step illustrated in Fig. 3(b) is a side product
of the enumeration, and is thus not explicitly accounted for
in the workflow of Fig. 3: i.e., in case two or more anycast

replicas are enumerated, this also implies true positive anycast
detection. Of course, while false negatives are possible on
a single inequality (i.e., flagging as unicast a truly anycast
target), their odd decreases using multiple vantage point pairs.

B. Enumeration

While the detection criterion expressed by (1) is not par-
ticularly novel [5], we are the first to leverage a full set of
distributed measurements in the study of anycast deployment
and its geographical properties as illustrated in Fig. 3(c). Dis-
tributed measurement allow indeed to infer more sophisticated
properties than mere binary detection, such as the count of
anycast replicas, or their position. It is possible that multiple
anycast instances may be located within a given disk. Although
the aim of anycast is to offer services from distinct locations,
the locations may be distinct from an IP routing point of view
but not distant geographically from each other. Therefore, our
technique can only provide a lower bound of the number of
anycast instances that correspond to our observations.

MIS formulation. To achieve our enumeration goal and sim-
plify the geolocalization step, we model the problem as a Max-
imum Independent Set (MIS). Our aim is to find a maximum
number of vantage points (and corresponding disks) for which
we are confident they contact distinct anycast instances (an
instance being included in the disk). To do so, we select a
maximum subset of disks E ⊂ D such that:

∀Dp,Dq ∈ E , Dp ∩ Dq = ∅ (2)

The enumeration problem is thus solved by the subset E ,
whose cardinality |E| corresponds to the minimum number of
instances that avoid latency violations, and which represents
thus a plausible explanation to our observations. Notice that |E|
is a lower bound on the number of anycast instances, since due



to the conservative definition of (1) we might have removed
disks that overlap due to noisy measurements. Additionally,
each disk of E yields a coarse location of anycast replicas, a
useful starting point for refinement in the geolocalization step.

Efficient MIS solution. Although the MIS problem is NP-hard,
it can be solved in finite time for small number of vantage
points with a brute force approach. This allows us to compare
the solution of known greedy approximate solutions: while
a simple greedy strategy has poor performance in general
((M − 1)−approximation) the situation improves by simply
sorting disks in increasing radius size (5-approximation), with
complexity O(Mlog(M) +M(M − 1)/2) determined by the
comparisons. The greedy pseudocode is trivial, hence omitted
here, but available in [21], [45] for the interested reader.
We point out that more refined solutions do exist [47], [48],
that achieve (1 − 2

k ) − OPT performance with k > 2 a
tunable parameter k > 2, at the price of a non marginal
computational complexity MO(k4). As we will show later, the
greedy solution often performs well in practice and is often
comparable to the brute force solution. Since computational
time of a greedy approximation for O(100) vantage points
is in the order of O(100ms), whereas brute force solution is
O(1000sec), a simple greedy MIS solver has an undoubted
practical appeal.

Alternative formulation. A final remark is worth making. Had
our original goal been limited to the enumeration of anycast
instances a Boolean satisfiability (SAT) formulation would
have been more appropriate. A geometric interpretation of our
problem would be then as follows: if we represent a anycast
instance using a cross, SAT consists in placing a minimum
number of crosses such that all the disks Dp contains at
least one cross. A benefit of this formulation is that SAT
upper bounds the number of instances returned by MIS, since
MIS removes overlapping disks from the set: hence, a SAT
formulation would increase the recall of anycast instances. At
the same time, the SAT formulation would make the geolocal-
ization harder and is thus not adapted to our goals: indeed, as
several realizations having exactly the same number of anycast
instances could satisfy this problem, SAT does not easily
allow to determine in which circles intersection the anycast
instances are located. Releasing datasets as open source should
facilitate implementation of alternative techniques for replicas
enumeration such as the one just illustrated.

C. Geolocalization
Our aim being to provide geographic locations at city

granularity, we need to refine the preliminary location that
is output by the enumeration algorithm. We opt for city
granularity for two reasons. Firstly, recall that a 1 ms noise
in latency measurement corresponds to an increase in the disk
size by 100 km. It follows that great trust should be put in
latency measurements to achieve finer-grained geolocalization.
Secondly, notice that the ground truth provided by DNS and
CDN measurement is already provided as IATA airport codes.
City-level granularity naturally allow to assess the correctness
of our geolocalization.

Classification formulation. As opposed to classical approaches
that operate in the geodesic (or Euclidean) space by construct-
ing density maps of likely positions (see references in [26]), or
assessing target location to be the center of mass of multiple
vantage points [28], we transform the geolocalization task
into a classification problem as in [49]. Specifically, since our
output is a geolocalization at city level granularity, we shift the
focus from identifying a geographical locus (lat, lon) ∈ Dp ⊂
R2 to identifying which among the cities c ∈ C ⊂ N contained
in the disk (latc, lonc) ∈ Dp is most likely hosting the anycast
instance. This focus shift greatly simplifies the problem in
two ways: first, it significantly reduces the space cardinality
(R2 to N); second, it allows us to further leverage additional
information with respect to delay or distance measurements,
namely the city population.

Geolocalization step outputs IATA airport codes as short-
hand for cities. For each of the non-overlapping disks of the
enumeration phase, some of the over 7,000 airports codes
may be contained in the disk. Aside from the trivial case
where a single airport is contained in the disk, in the general
case multiple airports {Ai} ∈ Dp, represented as a crosses in
Fig. 1(b), are contained in any given disk. The output of the
geolocalization phase can thus be expressed with disk-airport
pairs G = {(Di, Ai)} according to the notation of Fig. 3(f).

Classification criterion. To guide our selection of the most
likely location of a site, we employ two metrics, namely:
(i) the distance between the airport and the disk border
d(p, t)−d(p,Ai) and (ii) the population ci of the main city ci
that the airport Ai serves. Our intuition in using (i) the distance
between an airport and the border of a disk is that the larger
the distance, the nearer is the airport from the vantage point.
Here, we use geographic proximity from the vantage point as
a proxy for topological proximity in the routing space. Our
reasoning for (ii) extends previous work [49], which argues
that IPs are likely to be located where humans are located:
in other words, due to the distribution of population density,
large cities represent the likely geolocalization of single-host
unicast IP addresses. We further argue that, since anycast
replicas are specifically engineered to reduce service latency,
they ultimately have to be located close to where users live:
hence the bias toward large cities is again likely to hold for
server side anycast IPs as well. Hence, we include only airports
that are categorized as “medium” and “large” in the database,
but exclude airports categorized as “small”, because we are
only interested in locations that are densely populated. Our
IATA dataset contains a total of over 3000 airports.

For a given disk Dp we compute the likelihood of each
airport {Ai} ∈ Dp for all airports in the disk, illustrated in
Fig. 3(d) and defined as:

pi = α
ci∑
j cj

+ (1− α) d(p, t)− d(p,Ai)∑
j d(p, t)− d(p,Aj)

(3)

where
∑

i pi=1 follows from the normalization over all air-
ports {Ai} ∈ Dp of the ci contribution (population of the
main city served by airport Ai) and of the d(p, t) − d(p,Ai)
contribution (the distance of the airport i from the disk border).
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Fig. 4. iGreedy results: (a) Illustrative example of root server L and (b) compact summary of geolocation and enumeration performance across MI (PlanetLab,
RIPE) and breakdown of PlanetLab targets across services (DNS, CDN). Note that only 3 replicas are at erroneous location in the PlanetLab CDN case,
illustrated as points in the geolocalization error boxplot.

The parameter α ∈ [0, 1] tunes the relative importance of
population vs distance in the decision, in between the distance-
only (α = 0) vs city-only (α = 1) extremes. Likelihood for
three cities is exemplified in Fig.3(d). Based on the pi values,
we devise two maximum likelihood policies that return either
(i) a single Ai = argmaxipi or (ii) all locations (Ai, pi)
annotated with their respective likelihoods. These policies
involve a trade off, as returning all locations increases the
average error (since in case argmaxipi is correct, it pays the
price of incorrect answers for 1 − pi), whereas returning a
single location possibly involves a larger error. As we shall
see, the city population has sufficient discriminative power
alone, so that the simplest criterion of picking the largest city
is also the best:

Ai = argmaxici/
∑
j

cj (4)

D. Iteration

Recall that the enumeration step lower bounds the number
of instances, due to the possibility of overlapping disks. Now,
consider that the geolocalization decision in effect transforms
a disk Dp, irrespective of its original radius, into a disk D′p
centered around the selected airport with arbitrarily small ra-
dius (in this work, we conservatively shrink disks to a 100 km
radius). Hence, we argue that, provided the geolocalization
technique is accurate, it would be beneficial to transform
the original set of disks D by (i) remapping Dp to D′p and
(ii) excluding from D those disks that contain any of the
geolocalized cities D′p. This case is illustrated in Fig. 3: the
red-shaded disk overlapping in the previous enumeration step
Fig. 3(c), no longer overlaps after geolocalization of the two
circles in Fig. 3(d), so that it can be considered in the next
iteration Fig. 3(e). Denoting with A(k) the subset of airports
geolocalized up to step k, and with G(k) the geolocalization
at step k (considering a single airport selected per disk for
the sake of simplicity), defined as G(k) = {(Di, Ai) ∈
E(k) × A(k))}, we have that the dataset D(k + 1) as input
to the numeration problem at step k + 1 can be written
as D(k + 1) = D(k)\{Di : ∃(Di, Ai) ∈ ∪ki=1G(i)}. Iterations
continue until no further disk can be added that does not
overlap. At each iteration, the set of geolocalized cities grows,

so that the set of disks that no longer overlap diminishes,
which keep the running time reasonably bounded. Note that
iterative operations can be employed irrespectively of the
underlying solver (i.e., brute force, greedy, etc.). Notice also
that iteration “couples” the analysis of the geolocalization and
enumeration performance, as the input to the latter is modified
by the former. Finally, while we cannot elaborate due to space
constraints, it is worth mentioning that in practice iteration
increases complexity by less than 50% on average [45].

VI. RESULTS AT A GLANCE

We now run the open source iGreedy implementation on
the dataset5 provided to the community, reporting at a glance
illustrative examples and key performance indicators. Results
in this section are gathered with the “largest city” criterion of
(4) – we defer justification of this choice to Sec. VII, where
we perform a thorough assessment of iGreedy robustness.

A. Example of results

Geographical maps (using a GoogleMaps interface) are
among the outputs directly available in the open source
iGreedy implementation. For the sake of illustration, Fig. 4(a)
depicts an Euro-centric view of geolocalization of root server
L replicas: the map reports vantage points (black dots) and the
results of iGreedy as shaded disks that contain either correct
X (True Positive, TP) or erroneous × (False Positive, FP)
geolocalization markers (and in the last case the location of
the ground truth P as well) according to the earlier discussed
ground truth. The map additionally reports missed M instances
(False Negative, FN), whose position is known through pub-
lic available information. Such instances were missed either
because (i) they are not observed in our measurement, which
is the cause of the large majority of this misses or because
(ii) they are observed in disks that overlap (represented as
circles with no shading). Additionally, notice an example of
vantage points that our iterative workflow allows to include:
i.e., disks of the Bruxelles and Paris vantage points intersect.
Finally, observe that population bias yields to misclassification
for the point located in Porto, Portugal: this vantage point

5It is worth recalling that datasets are released in the same tarball of the
iGreedy code [23].
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Fig. 5. Tuning iGreedy classification: (a) cumulative true positive geolocalization over all disks, with argmax selection for different weighting factor α. (b)
iGreedy performance for different selection policies and weighting factor settings.

exhibits a relatively large latency (6 ms) to hit a target also
located in Porto, so that the disk is large enough to include
Madrid (population of 3.3M) which is an order of magnitude
more populated than Porto (population of 250K). The distance
between Madrid and Porto is 420 km, which is just 10% above
the median geolocation error of iGreedy.

B. Comparison with the state of the art

We separate analysis of iGreedy enumeration and geolo-
cation as follows. Enumeration aims at completeness, i.e.,
assessing the number of disks |E| contacting different replicas
that iGreedy is able to recollect, independently whether the
geolocation succeed. We normalize the number of replicas to
the number in the ground truth obtained with protocol specific
information and denote this ratio |E|/GT as enumeration
completeness. Geolocalization instead aims at correctness, so
that it is important to assess the amount of geolocation that
correctly matches the ground truth, which can be expressed
as the True Positive Rate or Precision = TP/(TP+FP). Notice
that the enumeration results of [6] are directly quantitatively
comparable, as [6] employs F and other root servers as a case
study, albeit the measurement timeframe and infrastructure
differ. Conversely, since iGreedy is the only technique able of
anycast geolocation, we do not have any candidate technique
to directly6 compare with in this case, and thus make our
dataset open to promote and facilitate future comparisons.

At a glance, Fig. 4(b) shows that, with respect to [6],
iGreedy: (a) reduces the measurement overhead by several or-
ders of magnitude, (b) has comparable yet lower enumeration
recall. Additionally, while [6] technique is limited to DNS and
does not allow geolocalization, iGreedy: (c) is protocol proto-
col agnostic and (d) is able to correctly guess anycast instance
location about 3/4 of the time. Finally, we can see that results

6In a sense, [6] also provides geolocation in CHAOS replies, which is the
very same information we use to build the ground truth: however, its use is
limited to DNS and is conditioned to having location information encoded in
server names, which we have seen to apply to only part of DNS root servers.
Similarly, our previous work [21] compares geolocalization results of the
unicast Client-Centric Geolocalization (CCG) [28] (which are however only
qualitatively comparable, as they additionally target the Google infrastructure).
As qualitative comparison may lead to misinterpretation, we prefer to avoid
reporting it here (which is available to the interested reader in [21])

are (e) qualitative consistent across service and measurement
infrastructure. As for (a), we indeed notice that [6] employs
62K vantage points (the Netalyzr dataset), i.e., about 200×
larger than PlanetLab and 10× larger than RIPE Atlas. As for
(b), since we observe enumeration performance that are worse
than that of [6] but anyway comparable, this intrinsically
means that the datasets used in [6] are highly redundant (e.g.,
including multiple trials from the same users; or affected by
popularity of Netalyzr in a given geographical region). The
very same observation also holds for the MI we use in this
paper (e.g., RIPE has several hundreds monitors in Paris, but
iGreedy uses at most one of them), so that we explore this
issue further in Sec. VII-C. As for (c), iGreedy is protocol-
agnostic because only latency measurements are needed, that
can be gathered from service-independent protocols such as
ICMP. As for (d), we report that geolocation is correct in
78% of the cases, and that the median error distribution of the
remaining 22% of the cases is 384 km. Making a parallel to
unicast geolocation, it is worth noticing that error magnitude
in iGreedy is similar to that of unicast techniques: e.g., without
(with) filtering large delay samples, [28] reports a 556 km
(22 km) median error. An additional similarity with is worth
stressing, quoting [28] “A disadvantage of our geolocation
technique is that large datacenters are often hosted in remote
locations, and our technique will pull them towards large
population centers that they serve. In this way, the estimated
location ends up giving a sort of logical serving center of the
server, which is not always the geographic location.”: the very
same hold here for iGreedy.

VII. SENSITIVITY ANALYSIS

We now thoroughly validate iGreedy (e.g., classification in
Sec. VII-A, solver in Sec. VII-B) and assess its robustness to
measurement campaigns and infrastructures (Sec. VII-C).

A. Impact of classifier

Weighting factor α. It could be argued that, at least for
small disks, latency information could bring useful information
to improve classification accuracy. To assess this, we first
consider individual disks Dp, where we apply the geolocation
criterion interpolating distance and population information via
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Fig. 6. iGreedy Sensitivity: (a) Thresholding input data (PlanetLab and RIPE) and (b) Impact of MIS Solver (PlanetLab)

α ∈ {0, 0.5, 1} in (3). As we consider all disks irrespectively
if they will be selected in the iGreedy enumeration phase, this
information is valuable for all algorithms. Fig. 5(a) reports
geolocation accuracy over all measurement platforms, targets
and protocols: in particular, the plot shows the average correct
geolocation ratio, cumulated over all disks up to a given size.
As it can be seen from Fig. 5(a) the probability of correct
geolocation is upper-bounded by α = 1: this suggests that city
population has discriminative power useful for any anycast ge-
olocation algorithm in general, and ultimately corroborates the
simple “largest city” criterion of (4). Given that geolocation
is still erroneous in about 20% of the cases, this is an area for
future improvement, using either complementary measurement
(e.g., traceroute) or side-channel information (e.g., Internet
exchange points maps [50]).

Selection policy. We now turn our attention to iGreedy, where
only a subset of all the above disks are selected by the
algorithm: over this set of disks, we study combination of the
selection policy (i.e., argmax vs proportional) and weighting
factor (α ∈ {0, 0.5, 1}). For any given disk Dp, let us denote
with AGT the airport code given by the ground truth, and
further denote with Ai the different airports that are located
in Dp. Considering the argmax policy, in case AGT = Ai

(with i such that argmaxi pi), the classification is accounted
as correct and does not count in the error statistics. In case
AGT 6= Ai, then the classification is erroneous, and off by
a distance Err = d(Ai, A

GT ). In the proportional policy
instead, the classification is accounted as correct only for
pi (i.e., proportionally to the percentage of time the correct
instance would be selected). The geolocalization error for this
instance is then computed over all airports inside the disk, and
weighted according to the respective likelihood of each airport
Err =

∑
j d(Aj , A

GT )pj .

In short, the tradeoff is between optimistically returning
a single location and possibly having large maximum error
(argmax) vs conservatively bounding the maximum error but
increasing the average error (proportional). Results are re-

ported in Fig. 5(b), from which it is easy to gather that,
given that iGreedy preferably select smaller circles, and in
reason of the good discriminative power of the city population,
argmax is largely preferable with respect to the proportional
policy. As early noticed performance are already similar for
α > 0.5, although α = 1 confirms to be the best setting,
leading furthermore to a very simple geolocalization criterion.

B. Impact of input data and solver

Latency measurement provides an input that is fed to a MIS
solver for the enumeration phase. Given the large uncertainty
in accurate geolocalization of replicas in large disks, it could
be tempting to filter out latency measurement exceeding a
configurable threshold. This is interesting not only to bound
the maximum error, but also since a smaller dataset can reduce
the computational time spent in the solution of the MIS.

Filtering input data. We thus start by filtering latency mea-
surements fed to the MIS, by setting a maximum threshold:
i.e., measurement larger than the threshold will be discarded,
which explicitly upper-bounds the maximum error. Intuitively,
this yields to a tradeoff between accuracy and completeness:
indeed, each disk by definition contains at least an anycast
instance, and despite the larger the disk, the harder the geolo-
cation, however discarding large disks potentially discards use-
ful information. Fig. 6(a) show average performance over all
dataset, as a function of thresholding: clearly, small thresholds
negatively affect recall, which is undesirable; instead, even
for for very large thresholds (e.g., over 100ms or 10000km
radius where geolocalization almost certainly fails), the com-
pleteness saturates, the correct geolocation stabilizes and the
geolocation error does not increase (despite iterations). This
desirable property follows from the fact that iGreedy order
disks by size and thus implicitly filters out the largest circles
from the solution. Hence, we do not recommend thresholding
measurements to be fed to iGreedy, which is inherently robust
to outliers – irrespectively of their nature such as BGP path
inflation, queuing delay, etc. [46].
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Fig. 7. Sensitivity of iGreey to the measurement infrastructure and campaigns: (a) impact of vantage point combinations and network protocols; (b) best,
average and worst-case results with P = 100 measurement per vantage point.

MIS Solver. Fig. 6(b) reports statistics about the enumeration
of our targets from PlanetLab with different solvers. For each
solver, the picture reports the completeness |E|/GT; each bar
annotates the number |E| of anycast replicas found, and the
x-label is annotated with GT and PAI information for that
target. It can be seen that the greedy solution is as good as
that of the brute force solution (I, K, EdgeCast, CloudFlare)
or anyway comparable (F, L). More interestingly, the iterative
workflow produces benefits that are sizeable and consistent
across datasets and solvers. Note also that most of the replicas
are found in the first iteration, which keeps the number of
iterations (and associated computational complexity) limited.

Solver selection is also affected by computational com-
plexity: under this perspective, the running time of iGreedy
(hundreds of milliseconds) is orders of magnitude smaller
with respect to that of the brute force approach (hundreds
to thousands of seconds). Indeed, that while we were able to
obtain brute force solution on the PlanetLab dataset, its cost
is prohibitive for the larger RIPE Atlas datasets. Thus, it also
follows that, while refined solutions do exist [47], [48], they
are not appealing due to the good enough performance and
short running time of the iGreedy solver.

C. Impact of measurement infrastructure and campaign

We assess the impact of MI and MC by (i) considering
different combinations of vantage points from multiple MIs,
and by performing latency measurement (ii) with different
protocols as well as (iii) with a varying number of samples
for the same protocol.

Vantage points. RIPE Atlas and PlaneLab have largely dif-
ferent characteristics concerning AS and country coverage, as
well as vantage points footprint. We thus expect MI to play a
paramount role in determining the results. Indeed, lack of VPs
in an area where anycast instances lay will likely result in false
negative (in case of disks overlap) or false positive (in case of
a single large disk covering the area). To reduce the intrinsic
VP redundancy, we also consider smaller subsets in the case
of RIPE Atlas . We thus consider (i) PlanetLab, (ii) a selection

of 200 RIPE Atlas VPs that are at least 100 km distant from
each, (iii) a random selection of 500 RIPE Atlas VPs, (iv)
the combination of PlanetLab and RIPE200, (v) the combi-
nation of PlanetLab and the full RIPE dataset. Notice that,
when combining MIs, our methodology seamlessly combine
DNS (from RIPE) and ICMP (from PlanetLab) measurement.
Given that HTTP measurement (hence, GT information) is not
available from RIPE, when combining PlanetLab and RIPE
CDN measurements we compare results with the PAI.

Some remarks are in order. Firstly, as expected, the set of VP
plays a paramount role: increasing the number of VPs increase
the number of valid instances that iGreedy is able to find.
Secondly, notice that even simple selections that avoid replicas
in the same city (RIPE200) are better than random selection
(RIPE500). Thirdly, combining PlanetLab and RIPE increases
the enumerated replicas – which holds even considering the
full set of RIPE VPs and despite PlanetLab has about 20×
less VPs than RIPE. Combination of VPs is done offline:
since the APIs of these MIs are totally different, it is not
easy to control a single experiment jointly using VPs from
both platforms. Yet, results suggest that it would be desirable
to leverage protocols such as LMAP [51] or mPlane [52] to
systematically exploit both platforms in a unified interface.

Network protocol. RTT latency can be obtained with several
protocols other than network-layer ICMP measurements. As a
matter of fact, a side-product of our DNS and HTTP ground-
truth measurement campaigns, we obtain delay measured with
application-layer protocols. Notice that for DNS CHAOS re-
quests, RTT latency include the server response time, whereas
for HTTP HEAD we rely on the TCP three-way handshake
duration (as including the server response, would overestimate
the distance by about a factor of two). Of course, GT campaign
only offer a single latency sample, which is however not
expected to have a major impact as just outlined. By running
iGreedy over latency samples gathered by these different
protocols, we do not observe any quantifiable difference in
the results (for completeness, this absence of variability is
illustrated in Fig.7(a) in the PlanetLab DNS vs ICMP case, but
we experimentally confirm it to hold over all PlanetLab tar-
gets and protocols combination). While robustness stem from
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Fig. 8. Applications of iGreedy: (a) longitudinal study of DNS root server L evolution using historical RIPE measurement and (b) density map of anycast
replicas over a full IPv4 census from PlanetLab.

the fact that iGreedy does not geolocalize based on latency
measurement, this reinforces the soundness of ICMP’s choice
to jointly achieve protocol-independence and correctness.

Varying number of samples. Results with varying number of
P latency measurements are reported in Fig.7(a). Specifically,
we run a measurement campaign gathering 100 ICMP sam-
ples per VP-target pair, and then consider: (i) the best case
where δBC(p, t) = miniδi(p, t),∀p, t; (ii) the worst case
where δWC(p, t) = maxiδi(p, t),∀p, t; (iii) the typical case
where δTC(p, t) are extracted at random from the δi(p, t)
population. We next run iGreedy over such sets, and compare
the performance over these sets: notice that while best and
worst cases are deterministic, for the typical case we consider
100 such sets, so to obtain performance that are statistically
representative of an average case. To quickly give an idea of
the robustness of iGreedy performance to real input data noise,
Fig.7(a) reports the mean error (left) and the completeness
(right) for the worst and average cases, normalized over the
best case as a reference. As it can be seen, performance
deteriorates slightly even in the unlikely worst case where
noise is maximum for all vantage points. More interestingly,
performance of the average case are almost indistinguishable
from the best case: this suggests that even less than a handful
of measurements per vantage point is sufficient to correctly
geolocalize anycast replicas with iGreedy.

VIII. APPLICATIONS

The anycast enumeration and geolocation technique we
propose can be a useful starting point for several application
having high practical relevance, illustrated in Fig. 8.

Longitudinal study. iGreedy can be used to perform a longi-
tudinal study of anycast infrastructure evolution. RIPE Atlas
provides the possibility to retrieve historical measurement data,
and has been issuing periodic DNS CHAOS requests to all
root servers since October 2011. We obtain monthly snapshots
of these DNS measurements: for the sake of illustration, we
select the most challenging case represented by the root server
L, which has the largest deployment, and run iGreedy on each
monthly snapshots. Since measurements have been performed

with DNS CHAOS, we are able, for each snapshots, to build a
reliable ground truth against which we can compare iGreedy
results. Fig. 8(a) depicts the time evolution of the number of
replicas in each snapshot, along with the number of instances
correctly geolocated by iGreedy, and is completed with an
PDF of the recall in the different snapshots. Notice that in
these snapshots not only the L root server deployment, but
also RIPE Atlas have changed, which also contributed to the
temporal evolution: hence, results reported in Fig. 8(a) are
of anecdotal relevance (i.e., single target; RIPE infrastructure
evolution; etc.), but nevertheless testify the feasibility of
anycast infrastructure mapping over historical data.

Anycast census. A complementary viewpoint to temporal evo-
lution of a specific deployment is represented by a broad spa-
tial analysis of anycast deployments. We depict in Fig. 8(b) the
current state of our ongoing effort to perform full IPv4 anycast
censuses from PlanetLab [2]. Shortly, for each IP/24 subnet,
we first find a responsive target IP address, toward which we
perform ICMP latency measurement from all PlanetLab hosts,
running iGreedy on the resulting dataset. Given the sheer size
of our target set, we run in this case a custom efficient scanner
[53] that stores measurement as binary data, and analyze
the dataset with a low-level C iGreedy implementation (not
available at [22] for the time being). We however make results
of this census browsable at [22]: for the time being, the website
contains results for the top 100 anycast ASes comprising 897
IP subnets, for which we find 11,598 replicas that are localized
in 71 cities of 36 countries. It is worth putting these results
in perspective with [5], which use latency-based technique to
perform anycast detection from distributed Renesys monitors:
despite the measurement period and infrastructure differ, it is
interesting to observe that that they detect 593 anycast prefixes
(0.13% of the global IPv4 routing table) used mostly for CDN,
DNS, and DDoS protection services. Of these prefixes, 88%
are /24, 3% are /23, and 9% are larger (they suggest that larger
prefixes may be anycast in part, which can be due to BGP
prefix aggregation). In reason of its lightweight, iGreedy is
amenable to continuously perform such censuses, extending
the longitudinal studies to the spatial dimension.



BGP hijack detection. As IP-level anycast is realized through
announcement of the same BGP prefix from multiple points,
the iGreedy technique could be used to perform or assist
BGP hijacking detection – as anycast and hijacks are indeed
“syntactically” equivalent with respect to a router speaking
the BGP “lingo”. Despite a large literature on the topic [54],
to the best of our knowledge most work exploits features
related to AS-paths, whereas latency information such as the
one we propose here has so far been ignored. Closest work
in this context is [55] where suspicious announces trigger
traceroute measurements from RIPE Atlas, which provides
additional information to determine whether the announce is
a hijack. Technique such as iGreedy could be run reactively
as in [55], gaining in timeliness with respect to executing a
full traceroute.

Troubleshooting. Finally, iGreedy could be useful in general,
adding e.g., a relevant feature for troubleshooting [56], in-
cluding e.g., ensuring reachability of specific anycast replicas,
or detecting unexpected affinity between a specific replica
and (a faraway) vantage point. Additionally, some inference
techniques could be applied only on the unicast context [57],
[58], where authors generally have to resort to some heuristic
to discard suspiciously anycasted instances: in this context,
iGreedy could either automatically validate the assumption, or
raise a flag forbidding to use such unicast-only techniques in
case of positive detection.

IX. CONCLUSION

Use of anycast has increased in the last few years, venturing
out of the DNS realm and revealing a sizeable footprint in, e.g.,
CDN services. At the same time, measurement techniques for
anycast infrastructure discovery are either protocol agnostic
but limitedly offer detection capabilities [5], or offer enumer-
ation capabilities but are limited to DNS [6]. The contributions
of this paper are to provide researchers and practitioner com-
munities with (i) iGreedy, a tool able of lightweight, protocol-
agnostic anycast replicas enumeration and geolocation on the
one hand, and with (ii) a suite of datasets and software, to
facilitate the development, validation and comparison of new
techniques on the other hand. The key to iGreedy performance
is the formalization of the enumeration step as a Maximum
Independent Set problem to maximize the replica coverage;
and formalization of the geolocalization step as a classification
problem, that leverages city population to factor out noise in
the latency measurements. iGreedy leverages latency measure-
ment from any protocol, and can seamlessly integrate measure-
ments from heterogeneous protocols. Being inherently robust
to outliers makes the technique extremely lightweight: even a
single latency sample per vantage point, from a few hundreds
vantage points suffices to provide satisfactory enumeration
and geolocation performance. Due to its lightweight and its
low computational complexity, the technique is amenable to
continuous large scale measurements, which is potentially
helpful in refining our understanding of the Internet.
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